Democratic instance selection: A linear complexity instance selection algorithm based on classifier ensemble concepts
نویسندگان
چکیده
منابع مشابه
IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملIntegrating Instance Selection and Bagging Ensemble using a Genetic Algorithm
Ensemble classification combines individually trained classifiers to obtain more accurate predictions than individual classifiers alone. Ensemble techniques are very useful for improving the generalizability of the classifier. Bagging is the method used most commonly for constructing ensemble classifiers. In bagging, different training data subsets are drawn randomly with replacement from the o...
متن کاملA cross-selection instance algorithm
Motivated by the idea of cross-validation, a novel instance selection algorithm is proposed in this paper. The novelties of the proposed algorithm are that (1) it cross selects the important instances from the original data set with a committee, (2) it can deal with the problem of selecting instance from large data sets. We experimentally compared our algorithm with five state-of-the-art approa...
متن کاملATISA: Adaptive Threshold-based Instance Selection Algorithm
Instance reduction techniques can improve generalization, reduce storage requirements and execution time of instance-based learning algorithms. This paper presents an instance reduction algorithm called Adaptive Threshold-based Instance Selection Algorithm (ATISA). ATISA aims to preserve important instances based on a selection criterion that uses the distance of each instance to its nearest en...
متن کاملInstance Selection to Improve Gamma Classifier
Pre-processing the dataset is an important stage in the Knowledge Discovery in Datasets (KDD) process. Filtering noise through instance selection is a necessary task. With this, the risk to use misclassified and non-representative instances to train supervised classifiers is reduced. This study aims at improving the performance of the Gamma associative classifier, by introducing a novel similar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence
سال: 2010
ISSN: 0004-3702
DOI: 10.1016/j.artint.2010.01.001